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Abstract— Top-k queries have gained considerable attention
as an effective means for narrowing down the overwhelming
amount of data. This paper studies the problem of constructing
an indexing structure that efficiently supports top-k queries for
varying scoring functions and retrieval sizes. The existing work
can be categorized into three classes: list-, layer-, and view-based
approaches. This paper focuses on the layer-based approach, pre-
materializing tuples into consecutive multiple layers. The layer-
based index enables us to return top-k answers efficiently by
restricting access to tuples in the k layers. However, we observe
that the number of tuples accessed in each layer can be reduced
further. For this purpose, we propose a dual-resolution layer
structure. Specifically, we iteratively build coarse-level layers
using skylines, and divide each coarse-level layer into fine-level
sublayers using convex skylines. The dual-resolution layer is able
to leverage not only the dominance relationship between coarse-
level layers, named ∀-dominance, but also a relaxed dominance
relationship between fine-level sublayers, named ∃-dominance.
Our extensive evaluation results demonstrate that our proposed
method significantly reduces the number of tuples accessed than
the state-of-the-art methods.

I. INTRODUCTION

With the exponential growth in database sizes, fighting the

information flood is of critical importance in modern database

systems. Toward this goal, top-k queries (or ranked queries)

have gained considerable attention as an effective means for

narrowing down the overwhelming amount of data. Top-k

queries only return the best k tuples satisfying users’ fuzzy

information needs.

Specifically, a top-k query consists of a retrieval size k and

a scoring function F , which assigns a numerical score to each

tuple in a target relation R. A user specifies her/his preference

by adjusting a weight w (or importance) of attributes, e.g.,

the price is twice as important as the distance from the

airport. (In this paper, we assume that the user preference

is represented by a linear combination function, as widely

used in the literature). The top-k query then returns the best

k tuples as a focused and selected result set. To satisfy users

with diverse preferences, efficient top-k query processing for

varying weights is required.

To illustrate such a top-k query, we introduce a hotel-finding

scenario, and formulate a top-k query based on an SQL-style

expression, i.e., ORDER BY and STOP AFTER k [1], [2].

EXAMPLE 1 (TOP-k QUERIES) Consider a hotel retrieval sys-

tem using a database Hotel(hno, name, price, distance, city).
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Fig. 1. Toy dataset in two-dimensional space

Suppose that a user “Alice” wants to find the best hotels in

‘Washington DC’ using two criteria, i.e., low price and short

distance to the airport. To search for the top-5 hotels satisfying

her preference with a weight (0.5, 0.5), she may formulate a

top-k query as:

SELECT * FROM Hotel

WHERE city = ‘Washington DC’

ORDER BY 0.5 * price + 0.5 * distance ASC

STOP AFTER 5; (Q1)

Fig. 1 depicts a toy dataset stored in the Hotel database. In

a geometric view, when representing a user-specific preference

by a weight vector w (an arrow), we can identify the top-5

tuples {a, b, f, d, e}, the scores of which can be computed by

sweeping the perpendicular line (dashed), e.g., F(a) = 3.5.

Meanwhile, another user “Betty” may consider price to

be more important, and issue a top-k query with a weight

(0.75, 0.25) unlike Alice’s query with (0.5, 0.5). According to

user preferences, the top-k results may be different. Therefore,

the database system should be able to support multiple top-k

queries for varying weights efficiently. �

For efficient top-k query processing, existing algorithms

have exploited pre-materialized structures to avoid unneces-

sary data access in R. Specifically, such structures can be

categorized into the following three types:

• Layer-based approach: This approach [3], [4], [5], [6],

[7] builds consecutive layers as a global index structure

on all attributes A. Each tuple in R is associated with

some layer by one-to-one mapping. This approach then



traverses one layer at a time by leveraging the relation-

ships between adjacent layers.

• List-based approach: This approach [8], [9], [10], [11],

[12], [13], [14], [15], [16] exploits a set of sorted lists

for each attribute. Given a scoring function F , it accesses

the sorted lists in a round-robin manner and aggregates

the scores identified from each list until the best k tuples

are found.

• View-based approach: This approach [17], [18], [19]

makes use of pre-computed top-k queries as views in

database systems. Given a new top-k query, it selects

the most similar materialized top-k query, and reuses its

computation.

This paper focuses on the layer-based approach, pre-

materializing tuples into multiple layers. Top-k answers can be

found by accessing the first k layers regardless of the scoring

functions. While existing approaches achieve efficiency by

restricting access to the first few layers, they still give complete

access to all tuples in a layer. This approach can be further

optimized by giving selective access. Specifically, we consider

the following two cases carefully:

1) Complete access: The first layer is a candidate set of

top-1 answers. This set can be identified as either a

convex hull [20], [21], [22] or a skyline [23], [24], [25],

[26], [27], [28].

2) Selective access: The dominant graph (DG) [5] defines

the dominance relationship between tuples in adjacent

layers. Using this relationship, DG selectively accesses

some of the tuples in the k layers.

This paper aims to enable selective access to the first layer

and to optimize the selective access further for the remaining

layers. For this purpose, we propose a dual-resolution layer,

which complements the advantages of the existing layer-based

approaches. Specifically, the dual-resolution layer is comprised

of coarse-level layers and fine-level layers. Tuples between

two adjacent coarse-level layers have dominance relationships,

named ∀-dominance. Each coarse-level layer is split into

multiple fine-level sublayers. The tuples between adjacent fine-

level layers have a new relaxed dominance relationship, named

∃-dominance, to restrict access to a few selected tuples in a

coarse-level layer. In addition, to enable selective access to the

first layer, we populate a virtual layer, i.e., the zero layer, with

a relationship to the tuples in the first layer.

We also develop efficient top-k query processing over the

dual-resolution layer. Given a scoring function, we first access

a convex skyline [4], [6], being a part of convex hull, as

the fine-level layer in the first coarse-level layer. We then

selectively access tuples by checking the ∀- and ∃-dominance

relationships between the coarse- and fine-level layers, respec-

tively.

To summarize, we believe that this paper makes the follow-

ing contributions:

• We design a dual-resolution layer that consists of a

coarse-level layer representing the skyline and a fine-level

layer representing the convex skyline.

TABLE I

LIST OF NOTATIONS

Notation Definition

R A target relation for top-k queries, {t1, . . . , tn}
n Cardinality
A A attribute set, {A1, . . . , Ad}
d The number of attributes
dom(Ai) A domain of Ai

t, t′ A tuple in R, t = (t1, . . . , td)
F A user-specific scoring function
w A weight vector, w = (w1, . . . , wd)
≺ Dominance (or ∀-dominance)
SKY(R) A skyline in R
CSKY(R) A convex skyline in R
L A layer set, {L1, . . . , Ll}
l The number of layers in L
Lij jth fine-level layer in Li

EDS A ∃-dominance set, {t1, . . . , td}
- ∃-dominance

FA A facet set FA = {FA1, . . . , FAr}

• We define a relaxed dominance relationship between the

fine-level layers.

• We develop efficient top-k query processing by travers-

ing the dual-resolution layer through the relationships

between tuples.

• We devise an optimization technique for virtually pop-

ulating the zero layer to achieve selective access in the

first layer.

• We evaluate the efficiency of our proposed layering

method by comparing it with the state-of-the-art methods

for extensive synthetic datasets.

The remainder of this paper is organized as follows. Sec-

tion II presents the preliminaries on top-k queries. Section III

designs the dual-resolution layer for further optimizing exist-

ing layer-based structures, and Section IV develops efficient

top-k query processing over the proposed dual-resolution layer.

Section V optimizes top-k query processing by giving selective

access to the first layer. Section VI reports our extensive

evaluation results, and Section VII surveys related work.

Finally, Section VIII concludes this paper.

II. PRELIMINARIES

This section first defines the basic notations to formalize

the problem of top-k queries. Let R = (t1, . . . , tn) be a target

relation with d attributes A = (A1, . . . , Ad). The domain

dom(Ai) of each attribute is non-negative real values, i.e.,

dom(Ai) → R+. A tuple t ∈ R is represented by (t1, . . . , td)
such that ∀i ∈ [1, d] : ti ∈ dom(Ai). For simplicity,

we assume that dom(Ai) is normalized to [0,1]. Table I

summarizes the notations used in this paper.

A top-k query consists of a scoring function F and a

retrieval size k. We assume that the scoring function is a

linear combination function, i.e., F(t) =
∑d

i=1 witi, where

w = (w1, . . . wd) is a user-specific weight vector. Without loss

of generality, the values of the weight vector are normalized

to [0, 1] and
∑d

i=1 wi = 1. In addition, we assume that

the scoring function F preserves monotonicity [8], [11], i.e.,

given two tuples t and t′, if ti ≤ t′i for Ai ∈ A, then
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Fig. 2. Skyline layers and convex layers using the toy dataset (Fig. 1)

F(t) ≤ F(t′). Recall that these assumptions are commonly

used in the literature [3], [4], [5], [6], [29].

Depending on user preferences, top-k queries may return k

tuples with the highest or the lowest scores. Without loss of

generality, in the rest of this paper, we assume that k tuples

with the lowest scores are returned as top-k answers. The

highest scoring tuples can be found by changing the sign of

tuples.

We formally define the top-k query problem. We assume

ties are broken arbitrarily by the unique identifiers to tuples.

DEFINITION 1 (TOP-k QUERY PROBLEM) Given a scoring

function F and a retrieval size k, a top-k query returns an

ordered set of k tuples {t1, . . . , tk}, i.e., F(t1) ≤ . . . ≤
F(tk) ≤ F(tl) such that tl ∈ R− {ti, . . . tk}.

A key challenge in computing top-k queries is to reduce the

number of accessed tuples as much as possible. To address this

problem, the existing work has exploited pre-computed index-

ing structures to avoid unnecessary data access. Specifically,

these can be categorized into three classes: (1) list-based, (2)

layer-based, and (3) view-based approaches. (Section VII will

review these existing approaches in detail).

In this paper, we focus on a layer-based approach, where an

indexing structure consists of consecutive multiple layers. Let

L = {L1, . . . Ll} be a set of layers. Each tuple in R belongs

to a layer with one-to-one mapping such that Li ∩ Lj = ∅
(i 6= j) and

⋃l

i=1 L
i = R.

We next define two important notions used in the existing

layer-based indexing structure.

First, a skyline [23], [25] is employed for the top-1 candi-

dates without scoring functions for constructing layers. The

skyline is based on a dominance notion. It is said that a tuple

t dominates another tuple t′ if t is no worse than t′ in all

attributes. We formally define dominance and skyline below.

DEFINITION 2 (DOMINANCE) Given t and t′, t dominates t′

on A, denoted as t ≺ t′, if and only if ∀ i ∈ [1, d] : ti ≤ t′i
and ∃ j ∈ [1, d] : tj < t′j .

DEFINITION 3 (SKYLINE) A tuple t is a skyline tuple if and

only if any other tuple t′ ( 6= t) does not dominate t on A. The

skyline is a set of skyline tuples such that SKY(R) = {t ∈
R|∄t′ ∈ R : t′ ≺ t}.

Skyline layers [5] can be built by identifying skylines in

a sequential manner. Specifically, the first layer L1 is the

skyline of R, and the ith layer Li (i > 1) is the skyline of

R−
⋃i−1

l=1 L
l. For example, Fig. 2(a) depicts the skyline layers

using a toy dataset (Fig. 1). These consist of three layers such

that L1 = {a, b, c, f, g}, L2 = {d, e, i, j}, and L3 = {h, k}.

Alternatively, a convex skyline [30] can be used. A convex

skyline is a subset of a convex hull [21], which is the smallest

convex polyhedron including all the tuples in R. Formally, we

define the convex skyline as follows:

DEFINITION 4 (CONVEX SKYLINE) A tuple t is a convex

skyline tuple if and only if t has the minimum score for any

linear combination functions. The convex skyline is a set of

convex skyline tuples such that CSKY(R) = {t ∈ R|t =
argmint∗∈R

∑d

i=1 wit
∗
i , wi ∈ R+,

∑d

i=1 wi = 1}.

As in the case of the skyline layers, we can build the

convex layers [3], [4], [31] by identifying convex skylines

sequentially. The first layer is the convex skyline of R, and

the ith (i > 1) layer is the convex skyline of R −
⋃i−1

l=1 L
l.

Fig. 2(b) depicts the convex skyline layers using the toy dataset

(Fig. 1). These consist of five layers such that L1 = {a, b, c},

L2 = {d, f, g}, L3 = {e, j}, L4 = {h, i}, and L5 = {k}.

The next section describes a new layer-based indexing

structure that takes advantage of both skyline and convex

layers.

III. PROPOSED LAYER-BASED INDEXING

In this section, we first observe existing layer-based index-

ing approaches and discuss their limitations (Section III-A).

To address the problems, we then design a dual-resolution

layer, which tightens the relationships between tuples in a fine

granularity (Section III-B).

A. Limitations of Existing Layer-Based Approaches

Given a retrieval size k, layer-based approaches basically

guarantee that tuples in the k layers contain top-k answers.

We can thus identify top-k answers by reducing the search

space by accessing all tuples in the k layers.

Existing approaches focus on optimizing the number of

tuples accessed in the k layers. Depending on the method of

layer construction, these are categorized into three classes.

Skyline-layer approach: The dominant graph (DG) [5] is

constructed by computing skylines in a sequential manner.

Specifically, the first layer L1 is identified by a skyline in

R. The next layer Li (i > 1) is defined iteratively by finding

the skyline in the remaining tuples R−
⋃i−1

l=1 L
l. This iteration

continues until no tuples remain. In addition, the dominance

relationship holds between tuples in adjacent layers, on the

basis of which we can avoid the unnecessary access among

dominated tuples, i.e., selective access. Because tuples in L1

are not dominated by any other tuples, DG requires complete

access to identify a top-1 tuple. In particular, because the

number of skyline tuples is always greater than or equal to

that of convex skyline tuples, the access cost for the first layer

is greater than or equal to that of convex-layer approaches.



TABLE II

SELECTIVITY OF LAYER-BASED APPROACHES

(0: COMPLETE ACCESS, +: RELATIVE SELECTIVITY)

Approach 1st Layer other layers

Convex-layer approach 0 0
Skyline-layer approach 0 ++
Hybrid-layer approach + +
Our approach +++ +++

Convex-layer approach: Onion [3] and AppRI [4] are built

in the same manner as DG, except that they identify the

convex skyline iteratively. To optimize Onion, AppRI reduces

the number of tuples for each layer. Unlike skyline layers,

however, both Onion and AppRI require complete access to

all layers.

Hybrid-layer approach: The hybrid-layer index (HL) [6] is

a hybrid of the layer- and list-based approaches. First, HL
identifies layers by computing convex skylines iteratively (as

in Onion), but the tuples in the layer are stored as sorted lists

in increasing order of d attribute values. Leveraging the sorted

lists, HL can reduce the number of tuples accessed from Onion

by selectively accessing tuples for each layer on the basis of

the list-based approach. Although HL gives selective access to

all layers, the selectivity is limited.

Our goal is to complement the existing approaches by en-

abling selective access to all layers and providing a systematic

optimization technique to improve the selectivity significantly

in both cases. Table II illustrates the relative selectivity of the

above three approaches and our approach.

B. Dual-Resolution Layer

We extend the existing approaches by constructing layers

of fine granularity. Specifically, each layer consists of a two-

level structure, called a dual-resolution layer. We first build

coarse-level layers using the skylines, and then divide each

coarse-level layer into multiple fine-level sublayers using the

convex skylines.

More specifically, the dual-resolution layer is constructed in

two phases:

1) Coarse-level layer construction: We build skyline

layers sequentially. The first layer L1 is the skyline

SKY(R) and the other layers Li (i > 1) are the skylines,

i.e., SKY(R−
⋃i−1

l=1 L
l).

2) Fine-level layer construction: We split the coarse-

level layer into consecutive convex layers at a much

finer granularity. Let Lij be the jth fine-level layer in

the Li coarse-level layer. For each coarse-level layer

Li, the first fine-level layer Li1 is the convex skyline

CSKY(Li), and the other fine-level layers Lij are the

convex skylines, i.e., CSKY(Li −
⋃j−1

l=1 Lil).

We next define the relationships between tuples in adjacent

layers over the dual-resolution layer.

First, we can exploit the dominance relationship for coarse-

level layers as in DG [5]. When sequentially accessing tuples

from the ith to (i+1)th coarse-level layers, we can avoid the

access of a tuple t′ ∈ Li+1 (i > 1) unless every tuple t ∈ Li
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Fig. 3. Geometric view of tuple-wise relationships in the toy dataset (Fig. 1)

dominating t′ is accessed. We formally state this dominance

property as used in DG [5].

LEMMA 1 (DOMINANCE BETWEEN COARSE LAYERS [5])

For any scoring function F , each tuple t ∈ Li always has a

smaller score than a tuple t′ ∈ Li+1 such that t ≺ t′, i.e.,

∀t ∈ Li, t ≺ t′ : F(t) < F(t′).

Proof: See reference [5].

Second, we define a relaxed dominance relationship be-

tween adjacent fine-level layers to achieve selective access.

Specifically, we split the coarse-level layer into multiple fine-

level layers. Because no dominance relationship holds between

two fine-level layers, we extend the dominance relationship for

the coarse-level layer into a relaxed dominance relationship for

the fine-level layer. To highlight this difference, we alterna-

tively call the classical definition of dominance ∀-dominance,

and define a new dominance notion as ∃-dominance. (We

replace the ∀ quantifier with ∃ in the definition).

Our next question is how to define ∃-dominance. From a

geometric viewpoint, if a tuple t ∈ Lij has a smaller score than

another tuple t′ ∈ Li(j+1), the half-space of the perpendicular

hyperplane lying on t′ contains t. For instance, tuple f has

a greater score than tuples a and b in each case (Fig. 3).

By shifting the weight vectors, we can identify the tuple-

wise relationship by comparing the scores of tuples. In this

case, no matter how the weight vector is adjusted, a or b are

always contained to the half-space (gray colors in Fig. 3) of

the perpendicular line lying on f . This implies that one of the

tuple set {a, b} always has a smaller score than f .

On the basis of this observation, we introduce an ∃-

dominance set (EDS). We consider a hyperplane H spanning

a set of d tuples in d-dimensional space. Given a hyperplane

H and a tuple t′, it is said that the tuple set on hyperplane

H is an EDS of a tuple t′ if H is below tuple t′ from the

origin. Further, it is said that each tuple t ∈ EDS ∃-dominates

t′. For example, a tuple set {a, b} is represented by a line in

two-dimensional space. As the line through {a, b} is below

tuple f , {a, b} is an EDS of f , and a and b ∃-dominate f .

We formally define the ∃-dominance set and ∃-dominance.

In addition, we state the ∃-dominance relationship between

tuples in adjacent fine-level layers.
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DEFINITION 5 (∃-DOMINANCE SET (EDS)) A set of d tuples

is an ∃-dominance set (EDS), i.e., {t1, . . . , td}, of a tuple t′

on A if there exists a virtual tuple tV that dominates t′ such

that tV lies on the hyperplane H spanning the EDS.

DEFINITION 6 (∃-DOMINANCE) Given two tuples t and t′, t

∃-dominates t′ on A, denoted as t - t′, if and only if t is in

the EDS of t′.

LEMMA 2 (∃-DOMINANCE BETWEEN FINE LAYERS) For any

scoring function F , there exists a tuple t ∈ Lij that has a

smaller score than a tuple t′ ∈ Li(j+1) such that t - t′, i.e.,

∃t ∈ Lij , t - t′ : F(t) < F(t′).

Proof: According to Definition 4, a tuple t ∈ Lij always

exists such that F(t) < F(t′) and t - t′.

We then discuss how to construct ∃-dominance sets for the

fine-level layer. Basically, the ∃-dominance sets in Lij need to

cover all tuples in Li(j+1), i.e., every tuple in Li(j+1) forms the

∃-dominance relationship for any tuple in Lij . Otherwise, we

might fail to identify correct top-k answers, i.e., some tuples

in Li(j+1) cannot be accessed from Lij .

One naive way of making ∃-dominance sets is to enu-

merate all possible tuple sets
(

|Lij|
d

)

, where |Lij | denotes

the cardinality of Lij . Because the number of dominance

sets increases exponentially with the number of attributes,

this incurs prohibitive computation costs and thus defeats our

purpose of performing selective access to tuples in Li(j+1).

To resolve this problem, we employ a set of facets repre-

senting a convex polyhedron [21]. The usual way to represent

the convex polyhedron is to intersect the half-spaces of the

hyperplanes. Let FA = {FA1, . . . , FAr} be a set of facets,

where each facet consists of a set of d tuples on A. Because

of this property, the facets can form minimal ∃-dominance sets

to cover all tuples, i.e., the facets encompass all tuples in the

convex polyhedron. In particular, we consider the facet as the

hyperplane segment to form ∃-dominance relationships. We

thus check whether each facet can be an ∃-dominance set of

another tuple in Li(j+1).

We now illustrate the relationships between adjacent fine-

level layers using a running example.

EXAMPLE 2 (RELATIONSHIP FOR FINE-LEVEL LAYERS)

Consider the first coarse-level layer in the toy dataset (Fig. 4).
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Fig. 5. Dual-resolution layer construction using the toy dataset (Fig. 1)

The coarse-level layer is split into two fine-level layers

L11 = {a, b, c} and L12 = {f, g}. Further, L11 consists of

two facets {a, b} and {b, c} (solid lines in Fig. 4a). Because

the facets represent the line segments, we only consider

parts of the regions (gray triangles in Fig. 4a). For a tuple

f , we thus check whether {a, b} is an ∃-dominance set of

f . The line segment constituting {a, b} goes through the

dominating region of f (gray rectangle in Fig. 4b), implying

that there exists a virtual point tV on the segment such that

tV dominates f . {a, b} can thus be an ∃-dominance set of f ,

and a and b ∃-dominate f . �

We lastly explain the overall procedure for constructing the

dual-resolution layer (Algorithm 1). First, we compute the

skylines for the coarse-level layers (line 6). For each coarse-

level layer, we then compute convex skylines as the fine-level

layers, and form the ∃-dominance relationships between fine-

level layers (lines 7–16). After updating the fine-level layers,

we also update the ∀-dominance relationships between coarse-

level layers (lines 17–19). This iteration continues until each

tuple in R is associated with an arbitrary layer.

We describe an example of constructing the dual-resolution

layer.

EXAMPLE 3 (DUAL-RESOLUTION LAYER CONSTRUCTION)

Fig. 5 depicts a dual-resolution layer using the toy dataset

(Fig. 1). Conceptually, the entire dataset is partitioned into

three coarse-level layers (solid boxes), i.e., L1 = {a, b, c, f, g},

L2 = {d, e, i, j}, and L3 = {h, k}. We then update tuples

with ∀-dominance relationships (solid arrows), e.g., a ∀-

dominates {d, e, i}. Similarly, each coarse-level layer is

divided into multiple fine-level layers (dotted boxes) such

that L1 = {{a, b, c}, {f, g}}, L2 = {{d, e, j}, {i}}, and

L3 = {{h, k}}. In addition, the ∃-dominance relationships

(dotted arrows) between adjacent fine-level layers are updated,

e.g., b and c ∃-dominate g. �

IV. TOP-k QUERY PROCESSING

This section presents top-k query processing over the dual-

resolution layer. Specifically, we first derive a filtering tech-

nique based on the ∀- and ∃-dominance relationships between

adjacent coarse- and fine-level layers, respectively. We then

describe the procedure of top-k query processing, building on

the filtering technique over the dual-resolution layer. Finally,



Algorithm 1 BuildDualLayer(R)

Input: R: a target relation on A
Output: L: a dual layer

1: L ← {}. // Initialize a dual-resolution layer.
2: i← 1. // Initialize the identifer of the coarse-level layer.
3: while R 6= {} do
4: Li ← {}. // Initialize the ith coarse-level layer.
5: j ← 1. // Initialize the identifier of the fine-level layer.
6: S ← SKY(R). // Compute a skyline for R.

7: while S 6= {} do
8: // Compute the jth fine-level layer in Li.
9: Lij ← CSKY(S). // Compute a convex skyline for S.

10: if j > 1 then

11: Update the ∃-dominance between Li(j−1) and Lij .
12: end if
13: Li ← Li ∪ Lij . // Insert Lij into Li.
14: S ← S − Lij . // Update current skyline S.
15: j ← j + 1. // Update the identifier of the fine-level layer.
16: end while
17: if i > 1 then
18: Update the ∀-dominance between Li−1 and Li.
19: end if
20: L ← L ∪ Li. // Insert Li into L.
21: R ← R− Ll. // Update target relation R.
22: i← i+ 1. // Update the identifier of the coarse-level layer.
23: end while
24: return L

we analyze the efficiency of the proposed top-k query process-

ing.

Top-k query processing using layer-based structures can be

viewed as a graph traversal problem as discussed for the

existing algorithms [5], [6]. Specifically, we form tuples as

nodes, and ∀- and ∃-dominance relationships as edges.

The key contribution here is to define an efficient filtering

technique that avoids unnecessary access. For this purpose, we

exploit the ∀- and ∃-dominance relationships for the coarse-

and fine-level layers, respectively.

First, ∀-dominance can be represented as solid edges (Fig. 5)

between adjacent coarse-level layers Li and Li+1 in a bipartite

graph. The ∀-dominance relationship preserves the monotonic-

ity in the coarse-level layer (Lemma 1). Specifically, a directed

solid edge e connects t ∈ Li and t′ ∈ Li+1 if t ∀-dominates t′,

i.e., if t ≺ t′, then e : t → t′. This can be employed to identify

top-k answer candidates (or prevent access to non-candidates).

We formally state this property used in DG [5] as follows.

THEOREM 1 (∀-DOMINANCE-ORDERED COARSE LAYERS)

Given adjacent coarse-level layers Li and Li+1, a tuple

t′ ∈ Li+1 can be in the top-k answers such that t ≺ t′ if

every tuple t ∈ Li is in the final top-(k − 1) answers.

Proof: See reference [5].

Second, ∃-dominance can be represented as dotted edges

(Fig. 5) between adjacent fine-level layers Lij and Li(j+1),

preserving the monotonicity in the fine-level layer (Lemma 2).

Similarly, top-k answer candidates (and non-candidates) can be

determined. We formally state this property for ∃-dominance.

THEOREM 2 (∃-DOMINANCE-ORDERED FINE LAYERS)

Given adjacent fine-level layers Lij and Li(j+1), a tuple

t′ ∈ Li(j+1) can be in the top-k answers such that t - t′ if

any tuple t ∈ Lij is in the final top-(k − 1) answers.

Proof: According to Lemma 2, a tuple t ∈ Lij exists

such that F(t) < F(t′) and t - t′. Therefore, if t′ is in the

top-k answers, t′ has to be in the top-(k − 1) answers.

Using these properties, we can maintain the status of a tuple

in each layer. Depending on its status, we can easily identify

whether or not a tuple needs to be accessed. Formally, we

define the status of a tuple as follows.

DEFINITION 7 (∀-DOMINANCE-FREE) A tuple t′ ∈ Li+1 is

∀-dominance-free, if and only if (1) t′ has no connected edge

from t ∈ Li or (2) every tuple t ∈ Li connected to t′ is in the

top-(k− 1) answers.

DEFINITION 8 (∃-DOMINANCE-FREE) A tuple t′ ∈ Li(j+1)

is ∃-dominance-free, if and only if (1) t′ has no connected

edge from Lij or (2) any tuple t ∈ Lij connected to t′ is in

the top-(k − 1) answers.

We now illustrate the statuses of tuples using our running

example:

EXAMPLE 4 (STATUSES OF TUPLES) We continue the exam-

ple for the dual-resolution layer (Fig. 5). We can identify

that the tuples {a, b, c, f, g} in the first coarse-level layer

are ∀-dominance-free. Further, the tuples {a, b, c, d, e, j, h, k}
in the first fine-level layer of each coarse-level layer are ∃-

dominance-free. In addition, when we access tuples sequen-

tially in the dual-resolution layer, the statuses of other tuples

can be changed. If a and f in L1 are in top-(k− 1) answers,

i is changed to be ∀-dominance-free. Similarly, if a or b in

L11 are added to the top-(k− 1) answers, f is changed to be

∃-dominance-free. �

On the basis of Theorems 1 and 2, when traversing tuples

through the dual-resolution layer, we only compute tuples that

are both ∀-dominance-free and ∃-dominance-free by F , and

avoid unnecessary computation of non-candidates. Formally,

we state this filtering condition for tuples as follows.

THEOREM 3 (FILTERING CONDITION) A tuple t′ only needs

to be accessed if t′ is both ∀-dominance-free and ∃-

dominance-free.

Proof: We consider two cases for a tuple t′. First, when t′

is not ∀-dominance-free, there exists a tuple t that ∀-dominates

t′. According to Theorem 1, we can safely skip access to t′

unless t is in the top-(k − 1) answers. Second, when t is not

∃-dominance-free, there exists a tuple t that ∃-dominates t′.

According to Theorem 2, we can safely skip access to t′ unless

t is in the top-(k − 1) answers.

We explain the overall procedure of computing top-k pro-

cessing over the dual-resolution layer (Algorithm 2). Let Q
be a priority queue in which tuples are placed in order of the

increasing scores by F . First, we insert all tuples in L11 into a

priority queue Q, because they are already ∀-dominance-free

and ∃-dominance-free (line 3). We then pop a tuple t with the

smallest score from Q and insert t into a final top-k answer set



Algorithm 2 ComputeTopKProcessing(L, F , k)

Input: L: a dual layer, F : a scoring function, k: a retrieval size
Output: K: a set of top-k tuples

1: K ← {}. // Initialize a top-k answer set.
2: Q ← {}. // Initialize a priority queue for top-k candidates.
3: All tuples in L11 are computed by F , and are inserted into Q.
4: while K.size() ≥ k do
5: t← Q.pop(). // Pop t with the smallest score from Q.
6: K ← K ∪ {t}. // Insert t into a top-k answer set K.
7: for all t′ connected from t in the coarse-level layer do
8: if t′ is ∀-dominance-free and ∃–dominance-free then
9: t′ is computed by F and is inserted into Q.

10: end if
11: end for
12: for all t′ connected from t in the fine-level layer do

13: if t′ is ∀-dominance-free and ∃-dominance-free then
14: t′ is computed by F and is inserted into Q.
15: end if
16: end for
17: end while
18: return K

(lines 5–6). We also check the filtering condition (Theorem 3)

for other tuples connected to t for coarse- and fine-level layers

(lines 7–16). This process is iterated until the top-k answers

are identified.

We describe an example of top-k query processing over the

dual-resolution layer.

EXAMPLE 5 Suppose that the retrieval size k is 3, and the

weight vector w is (0.5, 0.5). Table III describes the actions

of our proposed top-k query processing. After initializing a

priority queue Q and an answer set K, we access tuples

{a, b, c} in L11, and enqueue them into Q. Because tuple a is

the top-1 tuple, we pop a from Q. We then update the status

of tuples {d, e, f, i} connected to a. Because tuples {d, e, f}
are changed to be ∀-dominance-free and ∃-dominance-free,

we access those tuples, and insert them into Q. As the top-2

tuple, we pop b from Q, and also update the status of tuples

{g, j} connected to b. Because g becomes ∀-dominance-free

and ∃-dominance-free, g is inserted into Q. Lastly, we pop f

from Q as the top-3 tuple. As a result, the top-3 answers are

{a, b, f}. �

We then prove the correctness of the proposed top-k pro-

cessing.

THEOREM 4 (CORRECTNESS) The proposed top-k process-

ing returns correct top-k answers.

Proof: We prove this by induction.

1) Base case (k = 1): Our top-k query processing returns

the tuple with the smallest score in L11. Because one of

the tuples in L11 always has a smaller score than tuples

in other layers (Theorems 1 and 2), we can identify a

correct top-1 answer.

2) Hypothesis (k = i): By inductive hypothesis, our top-k

query processing returns correct top-k answers.

3) Induction (k = i + 1): When identifying the (i + 1)th

answer, we consider (1) top-(i+ 1) candidates in Q or

TABLE III

TOP-k QUERY PROCESSING OVER THE DUAL-RESOLUTION LAYER (FIG. 5)

Step Action Q K
1 Initialize Q and K. {} {}
2 Access tuples in L11. {a, b, c} {}
3 Pop a from Q. {b, c} {a}
4 Update {d, e, f, i} connected to a. {b, f, d, e, c} {a}
5 Pop b from Q {f, d, e, c} {a, b}
6 Update {g, j} connected to b. {f, d, e, c, g} {a, b}
7 Pop f from Q {d, e, c, g} {a, b, f}

(2) tuples connected to top-i candidates whose statuses

are both ∀-dominance-free and ∃-dominance-free. One

of the tuples satisfying (1) or (2) always has a smaller

score than other tuples (Theorems 1 and 2). Therefore,

our top-k query processing returns correct top-(i + 1)

answers.

By induction, our top-k query processing always returns cor-

rect top-k answers.

Finally, we discuss the efficiency of the proposed top-k

query processing by proving analytically that our algorithm

incurs less cost than DG. (DG is known as the most efficient

existing layer-based index). Specifically, we can view DG as a

layer-based index that employs only coarse-level layers from

dual-resolution layer indexing, and cannot take advantage of

∃-dominance relationships. We formally define the cost used

to evaluate our top-k query processing, and analyze the cost

of our top-k query processing. Recall that the cost model is

also used in DG.

DEFINITION 9 (COST) The cost is the number of tuples that

are both accessed and computed by F during top-k query

processing.

THEOREM 5 (COST ANALYSIS) Our top-k query processing

over the dual-resolution layer always incurs less or equal cost

than DG.

Proof: We prove this by contradiction. Assume that DG

can skip any tuples accessed by our top-k query processing.

While DG evaluates tuples whose statuses are ∀-dominance-

free, our top-k processing only evaluates tuples whose statuses

are both ∀- and ∃-dominance-free. We thus compare the tuples

evaluated by DG and ours: tuples pruned by ∀-dominance-free

⊆ tuples pruned by ∀-dominance-free ∧ ∃-dominance-free. If

DG does not evaluate a tuple that is ∀- and ∃-dominance-free,

then it does not guarantee to return correct top-k answers,

which is a contradiction. Thus, the cost of DG has to include

all the tuples evaluated by our top-k query processing.

V. OPTIMIZED TOP-k QUERY PROCESSING

This section presents optimization techniques for identifying

a top-1 tuple in L11. Because all tuples in L11 are essentially

∀- and ∃-dominance-free, we need to give complete access to

L11 (line 3 in Algorithm 2). To resolve this problem, we form

a virtual zero layer L0 to guide selective access to L11. Recall

that the tuples in L0 (or pseudo-tuples) are only introduced for

filtering purposes in L11 and do not exist in R.
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Specifically, we first discuss the structure of L0 in two-

dimensional space, which enables us to identify a top-1 tuple

by accessing only one tuple in L11 (Section V-A). In higher-

dimensional space (d ≥ 3), we develop a scalable alternative

structure (Section V-B).

A. Top-1 Tuple Selection in Two-Dimensional Space

Ideally, given a weight vector w = (w1, w2), one candidate

tuple t in L11 can be identified for selective access by using the

relationships between L11 and the virtual zero layer L0. Let

W denote a set of all possible weight vectors w. Considering

that W is an infinite set, we cannot enumerate every weight

vector w ∈ W to t. In contrast, we can represent W as a finite

set of weight ranges and associate a weight range with t.

In the two-dimensional case, the following conditions hold:

0 < w1, w2 < 1 and w1 + w2 = 1. Using this functional

condition between w1 and w2, we can represent W as the one-

dimensional range of w1, since the corresponding ranges of

w2 can be determined by 1−w1. Specifically, we represent W
as a finite set of disjoint ranges of w1, i.e., {W 1, . . . ,W |L11|}

such that
⋃|L11|

i=1 W i = [0 : 1] and W i ∩W j = ∅ (i 6= j).

For such partitioning, we leverage a set of facets FA repre-

senting L11. In two-dimensional space, a facet is represented

by a line across adjacent tuples. For example, suppose that L11

consists of three tuples {a, b, c}, where FA = {{a, b}, {b, c}}
(Fig. 6a). For the sake of representation, let lab denote a

line across tuples {a, b}, and wab denote a weight vector

perpendicular to lab.

Given a weight vector wab, tuples a and b have the same

scores, i.e., F(a) = F(b). By adjusting the slopes of the

weight vectors, we can identify the weight ranges for a specific

tuple. In particular, observe that the weight ranges are bounded

to two lines represented by adjacent facets including the tuple

because of the inherent convex skyline [20], [21], [32].

Fig. 6(a) illustrates the possible weight ranges (gray color)

for tuple b using lab and lbc. Because lab and lbc are orthogonal

to wbc and wbc, we can make the following inequality:

−
1

λ(lab)
≤

1− w1

w1
≤ −

1

λ(lbc)
,

where λ(lab) denotes a slope of lab, i.e., λ(lab) =
b2−a2

a1−b1
.
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Fig. 7. Extended dual-resolution layer with L0 using the toy dataset (Fig. 1)

We can replace the inequality as the range of w1.

λ(lbc)

λ(lbc)− 1
≤ w1 ≤

λ(lab)

λ(lab)− 1
.

Fig. 6(b) describes the weight ranges for each tuple on the

basis of this inequality. Once these ranges are identified, we

retrieve the matching range for the given weight vector w using

a binary search for w1, and identify a top-1 candidate. This

search method incurs the logarithmic search cost O(log|L11|).
While this scheme is highly effective, its extension to higher

dimensionality is non-trivial and expensive, as partitioning W
in (d−1)-dimensional space becomes more complex. We thus

exploit this scheme to inspire an alternative technique that can

be scaled for the dimensionality.

B. Top-1 Tuple Selection in High-Dimensional Space

To achieve scalability over the dimensionality, we relax L0

not to a single candidate t but to a cluster of tuples in L1.

While this intuition is similar to making the pseudo-tuples

in L0 as used in DG [5], our technique is more efficient by

exploiting fine-level sublayers.

Specifically, we first group the tuples in L1 using a clus-

tering algorithm, e.g., k-means. All tuples in a cluster C

are dominated by a virtual tuple tV = (tV1 , . . . , t
V
d ), where

tVi = mint∈Cti. We thus build a virtual zero layer, where

virtual tuples can dominate tuples in L1. Unlike in DG, we

can form a dual-resolution layer for the pseudo-tuples. That

is, the virtual tuples are divided into multiple fine-level layers,

and the ∀- and ∃-dominance relationships hold between L0 and

L1. Therefore, this construction can achieve higher selectivity

for L11.

To illustrate this, Fig. 7 shows an example of constructing

L0. For tuples in L1, two clusters, {a, b, f} and {c, g}, are

identified. We make two pseudo-tuples, tV 1 and tV 2, where

the attribute values are made by the minimum values for

the corresponding clusters. We then form the ∀-dominance

relationship between L0 and L1. By generating L0, we can

thus provide selective access to L1.

VI. EXPERIMENTS

This section presents empirical evaluation results for our

proposed dual-resolution layer. We first explain the experimen-

tal settings used. We then validate the indexing construction

time and the number of tuples accessed for top-k query



processing by comparing our technique with state-of-the-art

layer-based methods for extensive synthetic datasets.

A. Experimental Settings

To evaluate our dual-resolution layer, we generated ex-

tensive synthetic datasets with four parameters: distribution,

dimensionality, retrieval size, and cardinality. All the attribute

values were positive real numbers, i.e., ti ∈ (0, 1).

• Distribution: We generated two datasets, Independent

(IND) and Anti-correlated (ANT), following the data

generation instructions in [23].

• Dimensionality d: We varied the dimensionality d from

2 to 5. (Default: d = 4)

• Cardinality n: We varied the cardinality n from 100K to

500K . (Default: n = 200K)

• Retrieval size k: We varied the retrieval size k from 10

to 50. (Default: k = 10)

For the scoring function F , we randomly generated a user-

specific weight vector w = (w1, . . . , wd) satisfying ∀i ∈ [1, d]:
0 < wi < 1 and

∑

wi = 1.
We then compared our dual-resolution layer with the state-

of-the-art layer-based indices. Specifically, we implemented

the following algorithms.

• DG: We implemented DG, which sequentially built sky-

lines and tuples between adjacent layers were connected

by ∀-dominance relationships. When computing sky-

lines, we employed the state-of-the-art skyline algorithm

BSkyTree [28].

• DG+: DG+ is the advanced algorithm of DG. We built a

zero layer L0 for the first layer by exploiting the pseudo-

tuples using k-means clustering. For this optimization

technique, we followed the instructions explained in [5].

• HL: We implemented HL, which built sorted lists for each

convex skyline layer. For computing convex skylines,

we modified the state-of-the-art convex hull algorithm

QHull [22] available at http://www.qhull.org.

• HL+: HL+ is the optimized version of HL. When per-

forming TA using sorted lists for each layer, we updated

a tight threshold by accessing convex layers in a round-

robin manner as described in [6]. (Because HL+ always

showed better performance than HL, we do not report the

results for HL in this paper).

• DL: We implemented DL that built coarse- and fine-level

layers and tuples were connected by ∀- and ∃-dominance

relationships. When computing skylines and convex sky-

lines for the dual-resolution layer, we leveraged the same

algorithms as used in DG and HL.

• DL+: We optimized DL by building a zero layer L0 as

discussed in Section V-B. Unlike DG+, L0 was split into

multiple fine-level layers to improve the selectivity for

L11.

As a measure to validate the performance, we employ the

number of tuples evaluated (Definition 9). Other measures

such as query response time and I/O access cost may affect the

detailed implementation techniques of each indexing methods.

TABLE IV

INDEX CONSTRUCTION TIME OF EACH ALGORITHM (SEC)

(k = 10, d = 4, n = 200K )

Dist. HL HL+ DG DG+ DL DL+
IND 1.310 1.310 4.667 4.670 12.383 12.411
ANT 7.375 7.375 127.185 128.732 161.284 160.879

In contrast, our measure is suitable for comparing the overall

performance without this issue. In addition, this measure may

be directly proportional to the query response time and I/O

access cost.

We assume that all implemented indices are in the main

memory. However, these algorithms can be modified into disk-

based algorithms, where tuples in the same layer are stored in

the same disk block to reduce I/O cost, as discussed in [5].

All experiments were conducted using the Windows 7 with

on an Intel Core i7 950 3.07 Ghz CPU and 24GB RAM, using

C++ implementations of these algorithms.

B. Index Construction Time

We first compare the index construction time of algorithms

(Table IV). Each parameter was set by default for each

distribution (n = 200K , d = 4, k = 10).

The dominant part of the index building time comes from

making layers and forming the relationships between layers.

Specifically, DG requires the skyline computation for each

layer and dominance tests to connect the relationship between

adjacent layers. In addition, the index building time of HL

includes the convex skyline computation for each layer and

the sorting of attribute values within each layer. In contrast,

since DL requires us to compute both skylines and convex

skylines for coarse- and fine-level layers, it encodes richer

dominance relationships but incurs more computation costs

than other indices.

In addition, to optimize the zero layer L0 for DG and

DL, the optimized versions, DG+ and DL+, require more

construction time. However, because the number of tuples in

the zero layer is small, this computation time is negligible

(less than 1%). Meanwhile, HL+ shares the same index with

HL (difference only in query processing part using a tighter

threshold), and thus incurs the same index building time.

C. Performance Comparison between DL and DL+

This section compares DL and DL+ for varying retrieval

sizes and dimensionality. We used independent and anti-

correlated datasets with k from 10 to 50, and d from 2 to

5 (n = 200K). The main difference between DL and DL+ is

the existence of the zero layer L0, as discussed in Section V.

Fig. 8 shows the effect of L0 with varying retrieval size.

Regardless of the change in the retrieval size, the performance

gap between DL and DL+ remains more or less constant, i.e.,

DL+ is always two times better than DL in all settings. This

implies that the access cost is proportional to the retrieval size

k for both techniques.
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Fig. 9. DL and DL+ with varying dimensionality d

Fig. 9 shows that supporting selective access to L1 in

DL+ results in a higher performance gain than in DL as the

dimensionality increases. Observe that the gap between DL

and DL+ tends to increase for high-dimensional datasets. For

instance, when d = 5, DL+ accesses about three times fewer

tuples than DL.

D. Effect of Retrieval Size

This section evaluates the effect of retrieval size by compar-

ing five algorithms. We used independent and anti-correlated

datasets with k from 10 to 50 (d = 4, n = 200K). In all

settings, observe that our proposed algorithm DL (DL+) always

outperforms DG (DG+) and HL+.

Regardless of the change in the retrieval size, DL (DL+)

consistently outperforms DG (DG+) (Figs. 10 and 11). For

instance, when k = 50, DL consistently accesses three times

fewer tuples than DG for anti-correlated datasets, regardless

of the retrieval size k. This observation is consistent with ours

when comparing DL and DL+ (Fig. 8).

We next compare DL+ and HL+ with varying retrieval

size. Observe that DL+ accesses far fewer tuples than HL+.

In particular, as the retrieval size increases, the performance

gap between DL+ and HL+ tends to increase (Fig. 12). For

instance, when k = 50 for anti-correlated datasets, the access

cost of DL is one order of magnitude smaller than that of HL.

This is because the selective access in HL+, performing TA

for sorted lists, is sensitive to the retrieval size.

E. Effect of Dimensionality

This section evaluates the effect of dimensionality by

comparing four algorithms. We used independent and anti-
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Fig. 10. DG and DL with varying retrieval size k
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Fig. 11. DG+ and DL+ with varying retrieval size k
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Fig. 12. HL+ and DL+ with varying retrieval size k

correlated datasets with d from 2 to 5 (k = 10, n = 200K). In

all settings, DL (DL+) always accesses fewer tuples than DG
(DG+) and HL+.

As the dimensionality increases, the performance gap be-

tween DL (DL+) and DG (DG+) increases linearly (Figs. 13

and 14). For instance, when d = 5, DL is about 2.5 times

faster than DG for anti-correlated datasets. In particular, DL

(DL+) is more efficient than DL (DL+) for anti-correlated and

high-dimensional datasets.

This observation suggests that the optimization margin

coming from the filtering technique using fine-level layers

increases in high-dimensional data. Specifically, since our key

contribution is the division of a coarse-level layer and the

encoding of richer dominance relationships, i.e., ∀- and ∃-

dominance, DL and DL+ are relatively more effective, whereas

other methods suffer from accessing the coarse-level layer

with too many tuples. It is known from previous literature that

such cardinality explodes when the dimensionality is high or
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Fig. 13. DG and DL with varying dimensionality d
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Fig. 14. DG+ and DL+ with varying dimensionality d
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Fig. 15. HL+ and DL+ with varying dimensionality d

attributes are anti-correlated. This is also known as the curse

of dimensionality problem. Using ∃-dominance relationship is

thus effective for high dimensional and anti-correlated data.

We next compare DL+ with HL+ for varying dimensionality

(Fig. 15). Observe that DL+ accesses far fewer tuples than

HL+, as expected. For instance, when d = 5 for an anti-

correlated distribution, the access cost of DL is two orders

of magnitude smaller than that of HL.

F. Effect of Cardinality

This section evaluates the effect of cardinality by compar-

ing two algorithms. We used independent and anti-correlated

datasets with n from 100K to 500K (k = 10, d = 4). In all

settings, our proposed algorithm DL always outperforms DG.

Fig. 16 shows that both DL+ and DG+ are less sensitive

to cardinality comparing to the retrieval size and the dimen-

sionality. This is because the layers enable proportional access

100K 200K 300K 400K 500K
0

50

100

150

200

250

300

Cardinality

#
 o

f 
tu

p
le

s
 e

v
a

lu
a

te
d

 

 

DG+

DL+

100K 200K 300K 400K 500K
0

200

400

600

800

Cardinality

#
 o

f 
tu

p
le

s
 e

v
a

lu
a

te
d

 

 

DG+

DL+

(a) IND (b) ANT

Fig. 16. DG+ and DL+ with varying cardinality n

to data, as observed from our evaluations with varying k. As

a result, when k ≪ n, the algorithms access highly selective

tuples insensitive to n. (Because of space limitations, we do

not show the graph comparing other algorithms. The findings

are consistent with the results shown in Fig. 16.)

VII. RELATED WORK

Top-k queries are widely used in many real applications

such as image [9], [10] and text [14] retrieval. The main

concern for top-k query processing is to access a subset of

tuples in the target relation as small as possible. The existing

top-k processing algorithms are categorized into three classes:

layer-, list-, and view-based approaches.

A. Layer-Based Approach

The layer-based approach materializes tuples into consecu-

tive layers, and employs the relationships between layers to

reduce data access. We categorize the existing layer-based

approaches into three types: skyline-, convex-, and hybrid-

layer approaches. We discuss how our proposed approach

complements the state-of-the-art methods in each category.

• Skyline-layer approach: DG [5] finds skylines itera-

tively and materializes them as layers. The dominance

relationships between layers enable selective access to

layers. However, for high-dimensional or anti-correlated

data with a large set of skylines, the cardinality of each

layer is high and the performance starts to deteriorate.

Our dual-resolution layer indexing addresses this limita-

tion by further splitting each layer into fine-granularity

sublayers.

• Convex-layer approach: Onion [3] materializes convex

skylines into layers. Since dominance relationships do not

exist between adjacent layers, Onion requires complete

access to layers, and thus incurs higher access costs than

DG. AppRI [4] improves Onion by designing a robust

index, which reduces the sizes of tuples in each layer

by counting the number of dominating points. However,

AppRI cannot avoid complete access to layers either.

In clear contrast, our dual-resolution layer defines the

dominance relationships between the coarse- and fine-

granularity layers, and makes use of those relationships

to enable selective access to all layers.



• Hybrid-layer approach: HL [6] materializes convex

skyline as layers, but builds d sorted lists within each

layer for d attributes. This sorted ordering helps avoid

unnecessary access within a layer, and thus enables

selective access. However, compared to our systematic

approach of defining and leveraging formal relationships,

the selectivity is one order of magnitude higher, as we

found empirically reported in Section VI.

B. List-Based Approach

The list-based approach exploits a set of sorted lists for

efficient top-k processing. FA [8], TA [11], MPro [12],

Upper [13], and Unified [15] are well-known algorithms using

this approach. Given a scoring function F , these algorithms

access and aggregate the score of tuples by iteratively access-

ing the sorted lists in a round-robin manner until the best

k tuples seen become the top-k answers. However, as sorted

lists may have different importance (or weights) and may

also be correlated, round-robin access may not be optimal.

Some research work [16] has been carried out on optimal

access scheduling of sorted lists. Meanwhile, the layer-based

approaches are inherently robust to weights and correlations,

and do not require such scheduling.

C. View-Based Approach

The view-based approach examines pre-computed top-k

queries as views in database systems. The key idea of these

approaches such as PREFER [17], [18] and LPTA [19]

is to select the most similar materialized top-k query, and

to reuse access and computation to compute a new top-k

query. Specifically, PREFER determines a watermark tuple to

obtain top-k answers from the existing query. LPTA optimizes

PREFER by combining multiple top-k queries using a linear

programming technique. A drawback is the overhead of storing

and managing multiple top-k views.

VIII. CONCLUSION

This paper studied the problem of designing a layer-based

index to support multiple top-k queries efficiently. In particu-

lar, we focused on the optimization goal of making selective

access to each layer. To pursue this optimization goal, we

designed a dual-resolution layer, in which each coarse-level

layer was further divided into multiple fine-level sublayers at

a fine granularity. We then defined ∃-dominance to improve

the selectivity of access within the coarse-level layers, and

designed an optimization technique to virtually build the zero

layer to enable selective access to the tuples in the first layer.

We analyzed that our dual-resolution layer outperformed the

state-of-the-art methods.
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